
Exact Analysis of the Cache Behavior of Nested Loops�

Siddhartha Chatterjeey Erin Parkery Philip J. Hanlonz Alvin R. Lebeckx
sc@cs.unc.edu parker@cs.unc.edu hanlon@math.lsa.umich.edu alvy@cs.duke.edu

yDepartment of Computer Science
The University of North Carolina

Chapel Hill, NC 27599-3175

zDepartment of Mathematics
University of Michigan
Ann Arbor, MI 48109

xDepartment of Computer Science
Duke University

Durham, NC 27708

ABSTRACT
We develop from first principles an exact model of the behavior
of loop nests executing in a memory hierarchy, by using a nontra-
ditional classification of misses that has the key property of com-
posability. We use Presburger formulas to express various kinds of
misses as well as the state of the cache at the end of the loop nest.
We use existing tools to simplify these formulas and to count cache
misses. The model is powerful enough to handle imperfect loop
nests and various flavors of non-linear array layouts based on bit in-
terleaving of array indices. We also indicate how to handle modest
levels of associativity, and how to perform limited symbolic analy-
sis of cache behavior. The complexity of the formulas relates to the
static structure of the loop nest rather than to its dynamic trip count,
allowing our model to gain efficiency in counting cache misses by
exploiting repetitive patterns of cache behavior. Validation against
cache simulation confirms the exactness of our formulation. Our
method can serve as the basis for a static performance predictor to
guide program and data transformations to improve performance.

1. INTRODUCTION
The growing gap between processor cycle time and main mem-

ory access time makes efficient use of the memory hierarchy ever
more important for performance-oriented programs. Many compu-
tations running on modern machines are often limited by the re-
sponse of the memory system rather than by the speed of the pro-
cessor. Caches are an architectural mechanism designed to bridge
this speed gap, by satisfying the majority of memory accesses with
low latency and at close to processor speed. However, programs

�This work was supported in part by DARPA Grant DABT63-98-
1-0001, NSF Grants EIA-97-26370 and CDA-95-12356, NSF Ca-
reer Award MIP-97-02547, The University of North Carolina at
Chapel Hill, Duke University, and an equipment donation through
Intel Corporation’s Technology for Education 2000 Program. Erin
Parker is supported by a Lawrence Livermore Computer Science
Graduate Fellowship. The views and conclusions contained herein
are those of the authors and should not be interpreted as represent-
ing the official policies or endorsements, either expressed or im-
plied, of DARPA or the U.S. Government.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PLDI 2001 Snowbird, UT USA
Copyright 2001 ACM 0-89791-88-6/97/05 ..$5.00

must exhibit good locality of reference in their memory access se-
quences in order to realize the performance benefit of caches.

Optimizing compilers attempt to speed up programs by perform-
ing semantics-preserving code transformations. Loop transforma-
tions such as iteration space tiling [62] are a major source of per-
formance benefits. They restructure loop iterations in ways that
make the memory reference sequence more cache-friendly. The
theory of loop transformations is well-developed in terms of decid-
ing the legality of a proposed transformation and generating code
for the transformed loop. However, models of the expected per-
formance gains of performing a given loop transformation are less
well-developed [19, 38, 45, 48, 50, 51, 61]. Where such models
exist, they are often heuristic or approximate. For example, tiling
requires the choice of tile sizes, and the performance of a loop nest
is typically a non-smooth function of the extents of the loop bounds,
the tile sizes, and the cache parameters [13, 19, 38]. The model we
develop in this paper can be used to quantitatively determine the
number of cache misses of a proposed transformation without ex-
plicit simulation. Ultimately, such a model could be used to guide
the choice of parameters in such program transformations.

A complementary method for improving sequential program per-
formance that has been investigated in recent years is that of trans-
forming the memory layout of its data structures. Such data layout
transformations can vary in complexity; examples include trans-
position and stride reordering [32], array merging [39], intra- and
inter-array padding [50, 51], data copying [38], and non-linear ar-
ray layouts [14]. Once again, proper choice of parameter values is
of paramount importance in getting good performance out of such
transformations, but the models guiding this optimization are of-
ten inexact. For instance, Rivera and Tseng [50, 51] use heuristics
to determine inter-array pad. However, there is empirical evidence
that almost every choice of pad can be catastrophically bad for a
program as simple as matrix transposition [16]. Better models are
clearly needed to guide such optimizations. Our work in this paper
is a step in this direction.

An aggressive form of data optimization is the use of certain
families of non-linear array layouts that are based on interleaving
the bits in the binary expansion of the row and column indices of
arrays. Previous studies have demonstrated performance gains as
well as robustness of performance resulting from the use of such
layouts [14, 15]. Yet it is difficult to ascertain, short of simulation,
the memory behavior of a program given a particular data layout.
This paper works towards building an analytical model of cache be-
havior for such layouts that can provide insight into the relationship
between such data layouts and memory behavior.

Our model is an alternative to the well-known Cache Miss Equa-
tions (CME) model of Ghosh et al. [26]. Compared to CME, our
model has the following strengths and weaknesses.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
2001 2. REPORT TYPE

3. DATES COVERED
 -

4. TITLE AND SUBTITLE
Exact Analysis of the Cache Behavior of Nested Loops

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Defense Advanced Research projects Agency,3701 North Fairfax
Drive,Arlington,VA,22203-1714

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
The original document contains color images.

14. ABSTRACT
see report

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

12

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

� Our model is exact as a consequence of our use of Presburger
arithmetic as the underlying formalism. Ghosh et al. [26]
use the abstraction of reuse vectors to simplify the analysis.
Reuse vectors do not exist for all loop nests, and certainly do
not exist in the presence of non-linear array layouts.

� Our model accurately determines the state of the cache at the
end of executing a loop nest. This functionality is important
for accurately counting compulsory misses [30], for rapidly
leap-frogging up to a certain point in the computation, and
for handling multiple loop nests.

� Our model handles imperfect loop nests in addition to perfect
loop nests. We apply a transformation of Ahmed et al. [2, 3]
to an imperfect loop nest, thereby converting it to a perfect
loop nest with guards on statements. Ghosh et al. [26] con-
sider only a single perfect loop nest.

� Our model handles a variety of array layout functions, from
row- and column-major to non-linear. We will subsequently
refer to row- and column-major layouts as canonical lay-
outs [17]. The formulation for non-linear layouts is new, to
the best of our knowledge.

� Our model handles caches with modest levels of associativ-
ity in a natural way. While Ghosh et al. [25] can handle
set-associative caches, their solution method is equivalent to
simulation in the worst case.

� Our model is capable of symbolic analysis. This is a direct
consequence of our use of the Presburger formalism. For ex-
ample, we can simplify a formula for the cross-interference
between two arrays while keeping the difference of their start-
ing addresses symbolic. The simplified formula can be rapidly
evaluated for specific values of this variable.

� The enhanced capabilities of our model come at the cost of
computational complexity, in the form of super-exponential
worst case behavior of algorithms for satisfiability check-
ing and quantifier elimination of Presburger formulas [60].
While we have a prototype implementation of our model as
a SUIF [55] pass, and the analysis and formula generation
portions of the implementation are acceptably efficient, sig-
nificant improvements are necessary to the robustness and
efficiency of the simplification and counting parts.

Compared to explicit simulation, our formulas capture temporal
patterns of cache behavior that may not be apparent in simulation.
Moreover, an analytical cache model provides deeper insight into
the behavior than what may be learned from simulation. We antici-
pate that such information will make it possible to guide the choice
of data layouts that optimize cache behavior. We validate the re-
sults of all our formulas against simulation in Section 4, thereby
confirming their exactness.

The remainder of this paper is structured as follows. Section 2 re-
views background material for discussing our approach to the cache
analysis problem: basics of cache memory (Section 2.1), a new
classification of cache misses (Section 2.2), the polyhedral model
(Section 2.3), and Presburger arithmetic (Section 2.4). Section 3
constructs our model. Section 4 provides some preliminary results
obtained using our cache analysis model. Section 5 discusses re-
lated work. Section 6 presents conclusions and future work.

2. BACKGROUND
This section provides background material and defines notation

for the remainder of the paper.

2.1 Basics of memory hierarchies
We assume a simplified memory hierarchy that processes one

memory access at a time, with no distinction between memory
reads and writes.

2.1.1 Cache structure
The structure of a single level of a memory hierarchy—a cache—

is generally characterized by three parameters [30]: Associativity,
Block size, and Capacity. Capacity and block size are in units of the
minimum memory access size (usually one byte). A cache can hold
a maximum of C bytes. However, due to physical constraints, the
cache is divided into cache frames of sizeB that containB contigu-
ous bytes of memory—called a memory block. The associativity A
specifies the number of different frames in which a memory block
can reside. If a block can reside in any frame (i.e., A = C

B
), the

cache is said to be fully associative; if A = 1, the cache is direct-
mapped; otherwise, the cache is A-way set associative. A cache
set is the group of frames in which a memory block can reside, and
the number of cache sets, S, is given by S = C

AB
.

We assume a two-level memory hierarchy, consisting of an A-
way set associative cache with block size of B bytes and total ca-
pacity of C bytes followed by main memory. We also assume that
main memory is large enough to hold all the data referenced by
the program. The function B converts a memory byte address into
a memory block address (with B(a) = ba=Bc). The function S
converts a memory block address to the cache set to which it maps
(thus, S(b) = b mod S).

2.1.2 Cache dynamics
For an access to memory address m, the cache controller de-

termines whether memory block B(m) is resident in any of the A
cache frames in cache set S(B(m)). If the memory block is resi-
dent, a cache hit is said to occur, and the cache satisfies the access
after its access latency. If the memory block is not resident, a cache
miss is said to occur.

The state of the cache represents the memory block(s) contained
in each set of the cache at any point during a program’s execution.
Thus, in a direct-mapped cache where each set holds one frame,
the cache state C maps set s to the address of the memory block
contained there. In general, C is a map from cache sets to the sets
of memory blocks that they contain. C (s) is empty for a cache set
s to which no block has been mapped.

2.2 Classification of cache misses
From an architectural standpoint, cache misses fall into one of

three classes: compulsory, capacity, and conflict [30]. Capacity and
conflict misses are often combined and called replacement misses.
This classification is extremely useful for understanding the role of
capacity and associativity in the performance of a cache; however,
it does not have the property of composability.

Consider two program fragments P1 and P2, where, for i 2
f1; 2g, fragment Pi incurs Ci cold misses and Ri replacement

misses. Now consider the program fragment P12
def
= P1;P2 formed

by sequential composition of P1 and P2, and suppose that it incurs
C12 cold misses and R12 replacement misses. There is no simple
relation connecting the misses of the whole to the misses of the
parts. In particular, C12 +R12 6= C1 +R1 +C2 +R2. Composi-
tion is a fundamental operation in the construction of programs and
in the definition of programming language semantics. As we wish
to count cache misses for individual program fragments and their
compositions, we propose a different classification that is compos-
able.

We classify misses from a program fragment into the following

two classes.

� Interior misses are those data references that are guaranteed
to miss, independent of the initial cache state when the frag-
ment begins execution. In other words, given the code, the ar-
ray layouts, and the structural parameters of the cache, such
misses can be identified/enumerated/counted by analyzing
the fragment in isolation.

� Potential boundary misses are those data references that may
either hit or miss, depending on the initial cache state when
the fragment begins execution. The potential occurrence of
such misses can be identified by analyzing the fragment in
isolation, but the actual occurrence of the miss can be deter-
mined only after considering the initial cache state.

Another equivalent view of this classification is that we can stati-
cally examine a program fragment in isolation and place each data
memory access that it makes into one of three categories: those that
are guaranteed to hit, those that are guaranteed to miss (interior
misses), and those that could hit or miss depending on the initial
cache state (potential boundary misses). In a second step, we fur-
ther partition the potential boundary misses into hits and misses by
resolving them against the cache state when the program fragment
starts executing. We call these misses boundary misses. It follows
that, in order to compose program fragments, we also need to de-
termine the state of the cache after executing a program fragment.
For a given program fragment P and an initial cache state S, we
will let 	(P; S) denote the final cache state after fragment P has
completed execution.

Theorem 2.1 Let program fragment P1 executing from initial cache
state C 0 incur I1 interior misses and B1(C 0) boundary misses and
produce final cache state C1 = 	(P1; C 0). Let program frag-
ment P2 executing from initial cache state C 1 incur I2 interior
misses and B2(C 1) boundary misses and produce final cache state

C 2 = 	(P2; C 1). Let program fragment P12
def
= P1;P2 executing

from initial cache state C 0 incur I12 interior misses and B12(C 0)
boundary misses and produce final cache state C12 = 	(P12; C 0).
Then the following relations hold.

I12 +B12(C 0) = I1 +B1(C 0) + I2 +B2(C 1)

C 12 = C 2

PROOF. The proof follows immediately from the semantics of
program composition and from the deterministic nature of the pro-
gram fragments and of the cache.

Theorem 2.1 has several important consequences.

� The theorem enables the analysis of cache misses of a com-
posite program fragment in terms of the cache miss behavior
of its parts. Each part can be analyzed in isolation, and the
results of these analyses can be combined using cache states.
We will show later how to efficiently propagate cache state
across a program fragment.

� Stronger assertions, like I12 = I1 + I2, do not hold in gen-
eral.

� The theorem is silent about the nature of program fragments
P1 and P2 or about how to calculate boundary and interior
misses for them. In the remainder of the paper, we will
choose loop nests as our atomic program fragments and use
Presburger formulas to codify the various kinds of misses.

� The theorem provides additional leverage if symbolic anal-
ysis of the atomic program fragments is possible. For ex-
ample, block-recursive codes [4] employ multiple dynamic
instances of the same loop nest differing only in the starting
addresses of the data arrays on which they operate. Symbolic
analysis of such fragments would allow the cost of analysis
to be amortized over multiple uses of the resulting formulas.

� Note that boundary misses for a fragment are bounded from
above by the cache footprint of the data structures it accesses,
which is in turn bounded from above by the number of cache
frames. This number is typically much smaller than the num-
ber of interior misses. We could therefore avoid the calcu-
lation of cache state and approximate the number of cache
misses of the composite program by I1+ I2, with an accom-
panying error bound.

2.3 The polyhedral model
Our model for analyzing cache behavior of loop nests is based

on the well-known polyhedral model [20]. The program fragment
whose cache behavior we are trying to analyze is a nested normal-
ized loop with d levels of nesting, numbered 0 through d� 1 from
outermost to innermost. We first consider perfect loop nests; we
will extend the model to imperfect loop nests in Section 3.4. The
upper bound Uj of �j , the loop control variable (LCV) for loop j, is
an affine function of the LCVs �0 through �j�1. The iteration space
I is the set of all valid combinations of LCV values that are within
the bounds of the loop nest. The notation ` = [0̀; : : : ; `d�1]

T de-
notes a generic point in the iteration space I. The iteration space
possesses a total order �, which in the polyhedral model is the
lexicographic ordering. The order specifies the temporal order in
which the iteration points in the iteration space are executed.

The loop accesses elements of arrays Y (0) through Y (m�1). Ar-
ray variable Y (i) has di dimensions, with nj being the extent of the

array in the (j + 1)th dimension. The data index space Di corre-
sponding to array Y (i) is the Cartesian product [0; n0 � 1]� � � � �
[0; ndi�1 � 1].

The statements in the loop body make k references to array vari-

ables. The ith reference Ri has three components: Ni, the name of
the array referenced (so that Ni = Y (j) for some j 2 [0; m� 1]);
Fi, the index expression of the reference, which identifies the co-
ordinates of the array element accessed by this reference at itera-
tion point `; and Sh, the statement that contains reference Ri. To
include statement Sh in the definition of reference Ri may seem
excessive at this point, but it will be useful in Section 3.4 when
we consider imperfect loop nests. The index expression Fi is con-
strained to be an affine function of ` in each of its components.
Thus, Fi is a function from the iteration space I to the data index
space DNi

.
Borrowing terminology from Ghosh et al. [26], we call a static

instance of a memory read or write a reference, and a dynamic in-
stance of that read or write an access. A reference and an iteration
point uniquely define an access. The total order � on iterations
almost induces a similar total order on accesses; however, two ac-
cesses in the same iteration need to be ordered as well. We compose
the total order � on the iteration space and the order among refer-
ences of an iteration to define a total order “precedes” (written �)
among accesses. Thus, access (Ri; u) precedes access (Rj ; v) iff
(u � v) _ (u = v ^ i < j).

Several quantities are associated with array Y (i): a layout func-
tion Li, which is a 1-1 map fromDi into the memory address space
Z
+
0 ; �i, the starting byte address of the array; and �i, the number

of bytes per array element. Applying Li to an element of the array

Mathematical
Object Representation
An iteration point `

ith array reference Ri = (Y (j); Fi; Sh)
Access made by Ri at ` (Ri; `)

Array element accessed by Ri at ` ei = Y (j)[Fi(`)]
Byte address of ei mi = �j + Lj(Fi(`)) � �j
Block address of mi bi = B(mi)
Cache set to which bi maps si = S(bi)

Table 1: Table of notation.

produces an offset, and multiplying the offset by �i gives the byte
offset from the starting address of the array in memory. Adding this
offset to �i then gives the byte address of the element.

Putting all of this notation together, we have the objects of inter-
est and their mathematical representations shown in Table 1.

Example 1 Consider the following loop nest for matrix multipli-
cation, which we present in a stylized pseudo-code in an attempt to
remain language-neutral.

do i = 0, n-1
do j = 0, n-1

do k = 0, n-1
S0: C[i,j] = A[i,k]*B[k,j]+C[i,j]

end
end

end

This loop nest has depth d = 3. The LCVs are �0 = i, �1 = j,
and �2 = k. The loop nest accesses three arrays: Y (0) = A,
Y (1) = B, and Y (2) = C. Each array is two-dimensional, so
that D0 = D1 = D2 = [0; n � 1] � [0; n � 1]. There are four
array references: R0 = A[i; k], R1 = B[k; j], R2 = C[i; j]
(the read access), and R3 = C[i; j] (the write access). The in-

dex expressions of the four references are F0 =

�
1 0 0
0 0 1

�
,

F1 =

�
0 0 1
0 1 0

�
, and F2 = F3 =

�
1 0 0
0 1 0

�
. All refer-

ences are contained in statement S0.

2.4 Presburger arithmetic
Presburger arithmetic [31] is the subset of first order logic cor-

responding to the theory of integers with addition. Presburger for-
mulas consist of affine constraints on integer variables, which can
be either constraints of equality or inequality. The constraints are
linked by the logical operators :, ^ and _, and the quantifiers 8
and 9. It has been used to model various aspects of programming
languages, as well as in other areas such as timing verification [6,
7]. We use Presburger formulas to define polytopes whose contents
describe interesting events like cache misses.

Presburger arithmetic is decidable; however, a quantifier elimi-
nation decision procedure has a superexponential upper bound on
performance. More precisely, the truth of a sentence of length n

can be determined within 22
2
pn

time, for some constant p > 1
[46]. The bound is tight [60]. Bounded quantifier elimination has
worst-case upper and lower bounds of �(22

n

) [60]. The complex-
ity is related to the number of alternating blocks of 8 and 9 quanti-
fiers [52] as well as to the numerical values of the integer constants
and their co-primality relationships.

We use the Omega library [34] to manipulate and simplify our
Presburger formulas, and have found its methods reasonably effi-
cient for our applications.

3. THE CACHE ANALYSIS MODEL
The problem of central interest to us is the following.

Given a cache configuration as in Section 2.1, a loop
nest L meeting the conditions of Section 2.3, the layout
functions of the arrays accessed in L, and an initial
cache state C in :

� count the interior misses incurred by L;

� count the boundary misses incurred by L;

� find the cache state Cout after execution of L.

A simple strategy to accomplish all of these goals is through sim-
ulation of the code. This is precisely what cache simulators [29,
40, 54, 56] do. The main drawback of simulation is its slowness:
it takes time proportional to the running time of the code, usually
with a significant multiplicative factor (10� 100 is typical). In the
matrix multiplication kernel of Example 1, this time is �(n3). Our
goal is to develop much faster algorithms, whose existence is sug-
gested by the regularity of the array access patterns and the limited
number of cache sets to which they map.

Section 3.1 provides the basic Presburger formulas necessary to
describe the cache events in Section 3.2. Section 3.3 discusses how
we count cache misses, given such Presburger formulas. Section
3.4 extends our model to analyze imperfect loop nests. Section
3.5 shows how to extend our formula for interior misses to handle
modest levels of associativity. Section 3.6 reviews array layouts
based on bit interleaving, and provides the Presburger formulas to
describe them. Section 3.7 discusses issues related to physically
indexed caches.

3.1 Describing cache structure using Presbur-
ger formulas

We now present the basic formulas that will be combined in
Section 3.2 to describe cache events. The translations are mostly
straightforward or well-known [18, 49].

3.1.1 Valid iteration point
The predicate ` 2 I describes the fact that iteration point ` =

[`0; : : : ; `d�1]
T belongs to the iteration space.

` 2 I
def
=

d�1̂

i=0

0 6 `i < Ui (1)

3.1.2 Lexicographical ordering of accesses
When considering all accesses that occur before access (Rv;m),

we include any access occurring at an iteration `, such that ` �
m. To be complete, we must also include any access made at it-
eration m by a reference that occurs before Rv . The predicate
(Ru; `)� (Rv;m) describes the fact that the memory access made
by reference Ru at iteration ` precedes the memory access made by
Rv at m.

(Ru; `)� (Rv;m)
def
= ` 2 I ^m 2 I ^

(

d�1_
i=0

(`i < mi ^

i�1̂

j=0

`j = mj) _

(

d�1̂

j=0

`j = mj ^ u < v)) (2)

3.1.3 Mapping memory locations to cache sets
Let A = associativity, B = block size, C = capacity, and S =

C
AB

= number of cache sets. Then memory location m maps to
cache set s = bm

B
c mod S. This can be translated to the following

Presburger formula, where the auxiliary variable w represents the
“cache wraparound”. Suppose that Y (x) is the array referencing
memory location m, and let �x be the number of elements in Y (x).

Map(m;w; s)
def
= 0 6 s < S ^

B(wS + s) 6 m < B(wS + s) +B ^

�x �B < B(wS + s) < �x + �x�x (3)

The last clause in formula (3) bounds the possible values of w,
and is used to bound certain directions of the underlying polytope
that would otherwise be unconstrained. This bounding is needed
for efficiency in the counting step that follows formula simplifica-
tion. The quantity B(wS + s) represents the address of the first
byte in the block containing memory location m, which must be
within the memory locations containing array Y (x). However, if
the starting address �x is not aligned on a memory block bound-
ary, asserting that �x 6 B(wS + s) is wrong. As shown below,
the address of the first byte in the memory block containing Y (x)’s
first element may actually be less than �x. Restricting w such that
�x�B < B(wS+s) is correct whether or not the starting address
�x is aligned on a memory block boundary.

B(wS+s) B(wS+s)+Bm

µ
xµ

x
−B

3.1.4 Data layouts in memory
Row- and column-major layouts are easily expressed using Pres-

burger formulas. Consider reference Ru = (Y (x); Fu; Sh) and
iteration point `. Let Fu(`) = [i0; : : : ; idx�1]

T .

(m = Row-maj(Fu(`); �x))
def
= m > 0

^m = �x + (

dx�2X
j=0

(

dx�1Y
k=j+1

nk)ij + idx�1)�x (4)

(m = Col-maj(Fu(`); �x))
def
= m > 0

^m = �x + (i0 +

dx�1X
j=1

(

j�1Y
k=0

nk)ij)�x (5)

Section 3.6 discusses nonlinear data layouts.

3.2 Describing cache behavior using Presbur-
ger formulas

The various pieces described in Section 3.1 fit together to de-
scribe events in the cache. We now construct Presburger formulas
for interior misses, boundary misses, and cache state, as defined in
Sections 2.1 and 2.2. We consider direct-mapped caches for now,
and extend the formulation to set-associative caches in Section 3.5.

3.2.1 Interior misses
To identify a cache miss, Ghosh et al. [26] rely on the notion of

a most recent access of a memory block, which they obtain through

reuse vectors. This abstraction is valid when the array index ex-
pressions are uniformly generated in addition to being affine in the
LCVs. We avoid this condition by dispensing with the notion of a
most recent access in our formulas.

To determine if an access to a memory block b results in an in-
terior miss, it is enough to know two things: that there is an earlier
access to a different memory block mapping to the same cache set
as b; and that there is no access to b between this earlier access
and the current access to b. Let reference Ru = (Y (x); Fu; Sp) at
iteration point i access memory block bu, and let reference Rv =
(Y (y); Fv; Sq) at iteration point j access memory block bv . Sup-
pose that access (Rv; j) precedes access (Ru; i), recalling the “pre-
cedes” relation from Section 3.1.2; that bu and bv are distinct
memory blocks; but that both bu and bv map to the same cache
set s. Then, access (Ru; i) suffers an interior miss if there does
not exist a reference Rw = (Y (z); Fw; Sr) at iteration k access-
ing memory block bw , such that (Rv; j) � (Rw; k)� (Ru; i) and
bu = bw . The following formula expresses this condition.

((Ru; i) 2 IntMiss(L))
def
= i 2 I ^

9d; s : Map(Lx(Fu(i)); d; s) ^

9e; j; v : (Rv; j)� (Ru; i) ^

Map(Ly(Fv(j)); e; s) ^

:(9k; w : (Rv; j)� (Rw; k)� (Ru; i) ^

Map(Lz(Fw(k)); d; s)) ^ d 6= e (6)

Note that it is not necessary to have Y (z) = Y (x) in order to
have (Ru; i) and (Rw; k) access the same memory block. This
flexibility accommodates the possibility of array aliasing.

3.2.2 Boundary misses
Recall that boundary misses are those that are dependent on the

initial cache state. Therefore, we are interested only in those ac-
cesses that are the first to map to a cache set during the execution
of the loop nest. For all other accesses, the cache set already con-
tains a memory block accessed during the execution of the loop
nest, and initial cache state is irrelevant. To determine an actual
boundary miss for an access that is the first to map to the cache set,
it simply remains to check if the memory block accessed is resident
in the initial cache state of the set.

An access (Ru = (Y (x); Fu; Sp); i) to memory block bu suffers
a boundary miss if there does not exist an access (Rv; j) preceding
(Ru; i) and accessing a memory block bv mapping to the same
cache set, and bu is not in the initial cache state C in at set s. Note
that, unlike in the formula for interior misses, there is no constraint
bu 6= bv .

((Ru; i) 2 BoundMiss(L; C in))
def
= i 2 I ^

9d; s : Map(Lx(Fu(i)); d; s) ^

:(9e; j; v : (Rv; j)� (Ru; i) ^

Map(Ly(Fv(j)); e; s)) ^

B(Lx(Fu(i))) 62 C in (s) (7)

3.2.3 Cache state
If the loop nest L contains no memory access mapping to set

s, the final cache state of set s, C out(s), is the same as the initial
cache state C in (s). Otherwise, the final cache state of set s is the
address of the memory block that is not subsequently replaced by
an access to a block of memory mapping to the same cache set s.

(C out = 	(L; C in))
def
= 8s 2 [0; S � 1] : (9i : i 2 I ^

(9d : Map(Lx(Fu(i)); d; s) ^

:(9e; j; v : (Ru; i)� (Rv; j) ^ Map(Ly(Fv(j)); e; s)) ^

C out(s) = B(Lx(Fu(i))))) _

(:(9e : Map(Lx(Fu(i)); e; s)) ^ C out (s) = C in (s)) (8)

3.3 Counting cache misses
We use the Omega Calculator [33, 34] to simplify the formulas

above by manipulating integer tuple relations and sets. After sim-
plification, we are left with formulas defining a union of polytopes
(see Figure 4 for an example). The number of integer points in this
union is the number of misses. We use PolyLib [42] to operate
on such unions. We first convert the union into a disjoint union of
polytopes, and then use Ehrhart polynomials to count the number
of integer points [18] in each polytope.

3.4 Extension to imperfect loop nests
Extending our model to imperfect loop nests involves two steps.

1. We use the transformations of Ahmed et al. [2, 3] to convert
an imperfect loop nest into a perfect loop nest with guards on
statements.

2. We extend the notion of a valid iteration point to that of a
valid access.

For each statement of the loop nest, Ahmed et al. define a state-
ment iteration space whose dimension is the number of loops that
contain the statement. The product space for the loop nest is a
linearly independent subspace of the the Cartesian product of all
the statement iteration spaces. Affine embedding functions map a
point in a statement iteration space to a point in the product space.
When multiple statements map to the same iteration point in prod-
uct space, they are executed in program order. In relation to the
product space, embeddings represent guards on statements, map-
ping a statement from its place outside the innermost loop to a valid
place inside the innermost loop. We emphasize that the guards are
conceptual, and for analysis only. They do not result in run-time
conditional tests in the generated code.

Kelly and Pugh [35, 36] and Lim and Lam [41] have presented
other algorithms that embed imperfect loop nests into perfect loop
nests, with similar end results. The details of the embedding algo-
rithms are not important for our purpose. Our use of the framework
of Ahmed et al. merely reflects our greater familiarity with their
work.

Figure 1(a) is an improved version of Example 1, in which the
loop-invariant reference C[i,j] is hoisted out of the k-loop and
stored in a scalar x that can be register-resident. In this imperfect
loop nest, statements S0 and S2 occur outside of the innermost
loop. Let iX denote the loop index variable i pertaining to state-
ment SX. Then i0�j0 and i2�j2 are the statement iteration spaces
of statements S0 and S2, respectively. The following embedding
functions

F0(

�
i0
j0

�
) =

2
4 i0
j0
0

3
5 ; F2(

�
i2
j2

�
) =

2
4 i2

j2
n� 1

3
5 ;

map points in these statement iteration spaces to points in product
space [i; j; k]T . It is clear how the guards on statements S0 and
S2 of Figure 1(b) accomplish this. Statement S1 is already in the
innermost loop, and requires no guard on it.

The second part of the extension is to insure that our model can
handle array references that are guarded in this manner. We accom-
plish this effect by extending our notion of a valid iteration point
(Section 3.1) to that of a valid access.

Let Ru = (Y (x); Fu; Sh) be the uth reference with 0 6 u <
k. Let Gh(i) be the guard of statement Sh in the product space
version of the loop nest. We assume that the guards are expressible
in Presburger arithmetic. For Figure 1(b), G0 = (i2 = 0), G1 =

true, and G2 = (i2 = n2 � 1). Then (Ru = (Y (x); Fu; Sh); i) is
a valid access if i belongs to the iteration space, and Gh(i) holds.
The predicate (Ru; i) �2 I represents this fact,

(Ru; i) �2 I
def
= i 2 I ^ 0 6 u < k ^Gh(i) (9)

With this extension, the formulas from Section 3.2 apply directly,
with every occurrence of i 2 I replaced by (Ru; i) �2 I.

3.5 Associativity
We currently handle associativity in a straightforward manner,

assuming a Least Recently Used replacement policy. From Sec-
tion 3.2.1, we simply need to allow at least A distinct accesses
preceding (Ru; i) to unique memory blocks, such that there is no
access (Rw; k) accessing the same memory block as (Ru; i) and
(Rv0 ; j0) � (Rw; k) � (Ru; i) (where (Rv0 ; j0) is the earliest of
at least A references to unique memory blocks). The following
Presburger formula expresses interior misses for an A-way set-
associative cache.

((Ru; i) 2 IntMiss)
def
= i 2 I ^

9d; s : Map(Lx(Fu(i)); d; s) ^

9e0; j0; v0 : (Rv0 ; j0)� (Ru; i) ^

Map(Ly0(Fv0(j0)); e0; s) ^

(9e1; : : : ; eA�1 :

A�1̂

a=1

(9ja; va : (Rv0 ; j0)� (Rva ; ja)� (Ru; i) ^

Map(Lya(Fva(ja)); ea; s)) ^

d 6= e0 6= � � � 6= eA�1) ^

:(9k; w : (Rv0 ; j0)� (Rw; k)� (Ru; i) ^

Map(Lz(Fw(k)); d; s)) (10)

This method will handle modest values of A, and the complexity
of the formulas certainly increases with A. Presburger formulas
for cache state and boundary misses with associativity A are non-
obvious, and will require more work to construct.

3.6 Array layouts based on bit interleaving
Previous work [14, 15, 21] suggests that non-linear data layouts

provide better cache performance than canonical layout functions
in some numerical codes. Such layout functions are described in
terms of interleavings of the bits in the binary expansions of the
array coordinates rather than as affine functions of the numerical
values of these quantities. We describe such bit interleavings and
provide formulations of these layouts in Presburger arithmetic.

In developing the model of alternative array layouts, we assume
that nj = 2qj for some j 2 [0; dx � 1] (where dx is the number
of coordinates in an array Y (x)). Therefore, the bit representation
of an array index will have qj bits, with the least significant bit
(LSB) numbered 0 and the most significant bit (MSB) numbered
qj � 1. We identify the binary sequence sq�1 : : : s0 with the non-

do i = 0, n-1
do j = 0, n-1

S0: x = C[i,j]
do k = 0, n-1

S1: x = A[i,k]*B[k,j] + x
end

S2: C[i,j] = x
end

end

do i = 0, n-1
do j = 0, n-1

do k = 0, n-1
S0: if (k == 0) x = C[i,j]
S1: x = A[i,k]*B[k,j] + x
S2: if (k == n-1) C[i,j] = x

end
end

end

Figure 1: (a) An imperfect loop nest for matrix multiplication. (b) The product space version with guards.

negative integer s =
Pqj�1

i=0 si2
i. We denote by Bqj the set of all

binary sequences of length qj , and extend the above identification
to identify Bqj with the interval [0; 2qj � 1].

We describe a family of nonlinear layout functions parameter-
ized by a single parameter �, as follows. An (q0; : : : ; qdx�1)-
interleaving, �, is a sequence of length p (where p =

Pdx�1
i=0 qi)

over the alphabet f0; : : : ; (dx � 1)g containing qi i’s. It describes
the order in which bits from the dx array coordinates are interleaved
to linearize the array in memory.

An array layout functions as a map from dx array coordinates to a
memory address. Therefore, given an (q0; : : : ; qdx�1)-interleaving
�, define a map

� : Bq0 � � � � �Bqdx�1
! Bp

in the following way. If x(i) = x
(i)
qi�1 : : : x

(i)
1 x

(i)
0 2 Bqi8i 2

[0; dx� 1], then �(x(0); : : : ; x(dx�1)) is the sequence obtained by
replacing the jth u from the right with x(u)j . We extend this nota-
tion to consider � as a map from [0; 2q0 � 1]� � � � � [0; 2qdx�1 �
1] to [0; 2p � 1] by identifying non-negative integers and their bi-
nary expansions. We call � the mixing function indexed by �. Note
that �(0; : : : ; 0) = 0 for any �.

Example 2 Let dx = 2, n0 = 16 (q0 = 4), n1 = 16 (q1 = 4),
and � = 10110010. Then

�(12; 5) = �(1100; 0101) = 01101010 = 106:

Example 3 Let dx = 3, n0 = 8 (q0 = 3), n1 = 8 (q1 = 3),
n2 = 4 (q2 = 2), and let � = 21102001. Then

�(3; 7; 1) = �(011; 111; 001) = 01101111 = 111:

The idea behind translating such a data layout into a Presburger
formula is to define the bit values of the binary expansion of the
memory address using Presburger arithmetic. Consider again ref-
erence Ru = (Y (x); Fu; Sh) and iteration point `. For every nj
where 0 6 j < dx, let nj = 2qj . Then � is an (q0; : : : ; qdx�1)-
interleaving. Then we can compute the following dx � p matrix

Z(�). Letting g = �f , the f th column of Z(�) consists of 2e in

the gth position, where �f is the eth g from the right, and zeros in
every other position. Z(�) can be thought of as a transformation
that when applied to the binary expansion of a memory address m,
produces the coordinates of the array element at m.

Example 4 Given that dx = 3, n0 = 8 (q0 = 3), n1 = 8 (q1 = 3),
n2 = 4 (q2 = 2), and � = 12102010,

Z(�) =

2
4 0 0 0 4 0 2 0 1

4 0 2 0 0 0 1 0
0 2 0 0 1 0 0 0

3
5

The following formula maps Fu(`), �x, and Z(�) to memory
location m. Let p =

Pdx�1
j=0 qj , and let M = [mp�1; � � � ; m0]

T .

(m = Interleave(Fu(`); �x;Z(�)))
def
=

9moff ;mp�1; : : : ;m0 :

0 6 mp�1; : : : ;m0 6 1 ^m > 0 ^

m = �x +moff�x ^ Fu(`) = Z(�)M ^

moff =

p�1X
k=0

mk2
k (11)

Data layouts such as X-Morton and U-Morton [15] require an
X-OR operation in addition to bit interleaving. (Note that this for-
malism applies only to n � n arrays.) The additional X-OR op-
eration can also be expressed as a Presburger formula on the bit
representation.

3.7 Physically addressed caches
The techniques described thus far operate on virtual addresses.

However, many systems utilize physical indexed caches (e.g., sec-
ond level caches) whose performance is highly dependent on page
placement. Fortunately, most operating systems employ page col-
oring techniques that minimize this effect [37] by creating virtual
to physical page mappings such that the virtual and physical cache
index are identical. It may also be possible to extend our analysis
to include the effects of page placement; we leave this as future
research.

4. RESULTS
In this section, we present and interpret cache behavior as ob-

tained by our method on five model problems, and validate them
against cache miss counts produced by a (specially-written) cache
simulator. Unless otherwise specified, we use a direct-mapped
cache with capacity 4096 bytes and block size of 32 bytes that
is initially empty. We assume that all data arrays contain double-
precision numbers (so that � is eight bytes), and that all arrays are
linearized in column-major order. The total number of misses for
each array match up exactly between our model and the simulator
in all cases, but their partitioning differs. We explain the implica-
tions of this difference in Section 4.1.

Problem 1 (Matrix multiplication) We count boundary and in-
terior misses for each array for the matrix multiplication kernel
shown in Example 1, under four scenarios.

1. Problem size n = 21, the leading dimension of each array is
n, and the three arrays are adjacent to each other in memory
address space (i.e., �A = 0, �B = �n2, and �C = 2�n2).
We show results for all six possible permutations of the loop

orders, from both our approach and from explicit cache sim-
ulation. This is representative of a code where both the it-
eration space and the data arrays are tiled. Placing the ar-
rays back-to-back causes two memory blocks to be shared
between arrays. Figure 2(a) tabulates the results. The jki
loop order is seen to be substantially superior in terms of total
misses.

2. Problem size n = 20, the leading dimension of each array
is n, and the three arrays are adjacent to each other in mem-
ory address space. We show results for all six possible per-
mutations of the loop orders, from both our approach and
from explicit cache simulation. This scenario is similar to
the previous one, but there is no sharing of memory blocks
between arrays. Figure 2(b) tabulates the results. The num-
ber of misses is somewhat smaller, and the jki loop order
wins again.

3. Problem size n = 21, the leading dimension of each array is
n, and the three arrays collide in cache space (i.e., �A = 0,
�B = 4096, and �C = 8192). This represents a situation
where the arrays do not use the cache effectively (occupying
only 111 of the 128 cache sets). We show results for all six
possible permutations of the loop orders, from both our ap-
proach and from explicit cache simulation. Figure 2(c) tab-
ulates the results. The number of misses rises dramatically,
as expected; the jki loop order produces the fewest cache
misses, but not by as large a margin.

4. Problem size n = 20, the leading dimension of each array
is kn (for k 2 f1; 2; 3g), and the three arrays are adjacent
to each other in memory address space. This represents a
situation where the iteration space is tiled but the data is not
reorganized, resulting in the data tiles not being contiguous
in memory space. We show only the ijk loop order. Fig-
ure 2(d) tabulates the results. The total number of misses
for each array change with the leading dimension, although
different arrays behave differently.

Problem 2 (Multiple loop nests) We count boundary and interior
misses for each array for the following variation on the matrix mul-
tiplication kernel.

do i = 0, n-1 /* Loop nest 1 */
do j = 0, n-1

C[i,j] = 0
end

end
do i = 0, n-1 /* Loop nest 2 */

do j = 0, n-1
do k = 0, n-1
C[i,j] = A[i,k]*B[k,j] + C[i,j]

end
end

end

The layout constraints are identical to those in Problem 1, sce-
nario 1. This demonstrates how the model handles multiple loop
nests.

The miss counts are as follows.

A B C
Loop Bnd Int Tot Bnd Int Tot Bnd Int Tot

1 0 0 0 0 0 0 111 0 111
2 28 521 549 92 866 958 0 383 383

The model correctly classifies all the misses in the first loop nest as
boundary misses. The cache contains all of array C at the end of
the first loop nest, so all of the misses of C in the second loop nest
are interior misses. Figure 3 graphically represents cache state at
the end of the computation.

Problem 3 (Imperfect loop nest) We count boundary and interior
misses for each array for the imperfect loop version of the matrix
multiplication kernel of Figure 1 with n = 21, with the leading
dimension of each array being n. This demonstrates how the model
handles imperfect loop nests. We show two scenarios.

The first scenario has the three arrays adjacent to each other in
memory address space. The miss counts are as follows.

A B C (read) C (write)

Bnd 28 92 8 0
Int 521 866 383 0

Total 549 958 391 0
Cold 110 110 111 0
Repl 439 848 280 0

The significant observation is that none of the write references to C
miss, even though there are many references to A and B between
the read and the write reference to C[i,j]. The total number of
misses is identical to that of Problem 1, scenario 1.

The second scenario has the arrays colliding in the cache. The
miss counts are as follows.

A B C (read) C (write)

Bnd 20 90 1 0
Int 980 648 440 441

Total 1000 738 441 441
Cold 111 111 111 0
Repl 889 627 330 441

Now every read and write reference to C[i,j] misses. However,
the total number of cache misses is significantly smaller than the
corresponding case in Problem 1, scenario 3, showing the benefit
of allocating C[i,j] in a register.

Problem 4 (Set-associative cache) We count interior misses for
each array for the matrix multiplication kernel shown in Example 1,
using two-way associative caches. The layout constraints are iden-
tical to those in Problem 1, scenario 2. This demonstrates how the
model handles associativity.

Both scenarios consider a two-way associative cache with block
size of 32 bytes that is initally empty. The cache has a capacity
of 4096 bytes in the first scenario and 8192 bytes in the second
scenario. The miss counts are as follows.

C = 4096 C = 8192
A B C A B C

Bnd 128 256
Int 75 773 213 8 0 36

Total 1189 300
Cold 100 100 100 100 100 100
Repl 0 757 132 0 0 0

The total number of boundary misses in each scenario is deter-
mined by the number of cache frames in the footprint of all three
arrays in cache. For every cache frame that is touched during the
matrix multiplication kernel, the first instance of a memory block
being mapped to the cache frame incurs a boundary miss since the
cache is initially empty. In the first scenario, there are 64 cache

(a)

Loop A B C Grand
order Bnd Int Tot Cold Repl Bnd Int Tot Cold Repl Bnd Int Tot Cold Repl Total

ijk 28 521 549 110 439 92 866 958 110 848 8 383 391 111 280 1898
ikj 18 445 463 110 353 85 1985 2070 110 1960 25 1563 1588 111 1477 4121
jik 108 590 698 110 588 18 502 520 110 410 2 109 111 111 0 1329
jki 104 355 459 110 349 18 167 185 110 75 6 207 213 111 102 857
kij 2 184 186 110 76 34 1644 1678 110 1568 92 1624 1716 111 1605 3580
kji 9 297 306 110 196 31 436 467 110 357 88 530 618 111 507 1391

(b)

Loop A B C Grand
order Bnd Int Tot Cold Repl Bnd Int Tot Cold Repl Bnd Int Tot Cold Repl Total

ijk 25 405 430 100 330 85 661 746 100 646 18 298 316 100 216 1492
ikj 23 349 372 100 272 73 1533 1606 100 1506 32 1205 1237 100 1137 3215
jik 97 409 506 100 406 28 345 373 100 273 3 97 100 100 0 979
jki 95 261 356 100 256 28 131 159 100 59 5 160 165 100 65 680
kij 13 146 159 100 59 33 1276 1309 100 1209 82 1254 1336 100 1236 2804
kji 16 220 236 100 136 31 352 383 100 283 81 404 485 100 385 1104

(c)

Loop A B C Grand
order Bnd Int Tot Cold Repl Bnd Int Tot Cold Repl Bnd Int Tot Cold Repl Total

ijk 21 964 985 111 874 90 1799 1889 111 1778 0 2393 2393 111 2282 5267
ikj 1 864 865 111 754 110 1846 1956 111 1845 0 2556 2556 111 2445 5377
jik 107 578 685 111 574 4 1900 1904 111 1793 0 2123 2123 111 2012 4712
jki 111 558 669 111 558 0 1789 1789 111 1678 0 2232 2232 111 2121 4690
kij 5 545 550 111 439 20 1866 1886 111 1775 86 2299 2385 111 2274 4821
kji 6 577 583 111 472 5 1823 1828 111 1717 100 2229 2329 111 2218 4740

(d)

A B C Grand
k Bnd Int Tot Cold Repl Bnd Int Tot Cold Repl Bnd Int Tot Cold Repl Total

1 25 405 430 100 330 85 661 746 100 646 18 298 316 100 216 1492
2 40 305 345 100 245 71 1198 1269 100 1169 17 227 244 100 144 3350
3 40 449 489 100 389 68 1119 1187 100 1087 20 311 331 100 231 5357

Figure 2: Miss counts from our approach (Bnd and Int) and from cache simulation (Cold and Repl). (a) Problem 1, scenario 1. (b)
Problem 1, scenario 2. (c) Problem 1, scenario 3. (d) Problem 1, scenario 4.

Array A Array B Array C

Figure 3: Cache state at the end of the computation described in Problem 2. The shaded blocks are cache-resident. There are exactly
128 shaded memory blocks. Arrays A and B share a block, as do arrays B and C. The block with the heavy outline in each array
maps to cache set 0.

sets. Since the cache footprint of all arrays ‘wraps around’ at least
twice, we know that all 128 cache frames are touched. Hence, there
are 128 boundary misses in scenario 1. Similarly, we can determine
that there are 256 boundary misses in scenario 2.

Problem 5 (Symbolic analysis) We analyze the matrix-vector prod-
uct example from Fricker et al. [22] to show the symbolic process-
ing capabilities of our approach. The code is as follows.

do j1 = 0, N-1
reg = Y[j1]
do j2 = 0, N-1

reg += A[j2, j1] * X[j2]
end
Y[j1] = reg

end

We focus on the interior misses on X due to interference from A,
assuming that �A = 0 but that �X is symbolic. For compatibility
with Fricker et al., we use a direct-mapped cache of capacity 8192
bytes and block size of 32 bytes, and we choose N = 100. The
formula shown in Figure 4 is a pretty-printed version of formula
(6) as simplified by the Omega Calculator. While the formula ap-
pears formidable, it should be kept in mind that it captures the miss
patterns for all possible values of �X . In principle, the Ehrhart
polynomial of the polytope union represented by this formula can
be computed, enabling counting of the number of misses for a par-
ticular value of �X by evaluating this polynomial.

4.1 Interpretation of results
Two general observations on the results are worth mentioning.
First, the model results are identical to the simulation results in

all cases. This reinforces the exactness of the model, which is a
major strength.

Second, the classification of cache misses into boundary and in-
terior misses rather than cold and replacement misses is a signif-
icant departure from previous models. Boundary misses are, in a
sense, a cache-centric analog of cold misses. Just as the number
of cold misses of a program is no more than the number of mem-
ory blocks occupied by the data, the number of boundary misses
is no more than the combined cache footprint of the data, which
is itself bounded above by the number of cache sets. This can be
verified by totaling the boundary or cold misses in any row of Fig-
ure 2(a) (where the totals are 128 and 300, respectively) or Fig-
ure 2(b) (where the totals are 111 and 333, respectively). In gen-
eral, then, the number of boundary misses should be significantly
smaller than the number of cold misses. Thus, our classification al-
lows for more precise context-free identification of misses, leaving
many fewer references to be resolved from cache state.

4.2 Running times
Figure 5 shows a histogram of the running times required by the

Omega Calculator [33] to simplify 108 sample cache miss formulas
on a 300MHz Sparc Ultra 60. The samples are made up of bound-
ary and interior miss formulas for each array in scenarios 1, 2, and 3
of Problem 1. The cache miss formulas are generated from source
code using a SUIF [55] compiler pass that we developed for this
purpose. The time required for formula generation is negligible.

Half of the cache miss formulas run in less than 10 seconds,
and the majority of those formulas run in less than 1 second. The
boundary miss formulas simplified quickly (most in under a sec-
ond), while the time required to simplify the interior miss formulas
varied widely. We have observed the running time of a formula to
be strongly correlated to the number of cache misses it generates.

Given these running times, our approach clearly does not yet
have enough performance to be practical; however, the value of in-

0

5

10

15

20

25

30

35

40

45

50

55

0-1 s 2-10 s 11-30 s 31-60 s 61-120 s 121-180 s 181-240 s >241 s

Histogram of Running Times

Figure 5: Histogram of running times of formula simplification
using the Omega calculator on a 300 MHz Sparc Ultra 60.

sight gained from our approach should not be overlooked. Further-
more, it is not clear how much of the slow running time is a con-
sequence of our formulations and how much is due to the Omega
software. We hope to make this determination in the immediate
future, by investigating other software options.

5. RELATED WORK
We organize related work by the way in which they handle cache

behavior: compiler-centric, language-centric, architecture-centric,
or trace-centric (including simulation).

Compiler-centric. The work of Ghosh et al. [23, 24, 25, 26] is
most closely related to our framework for analytical cache model-
ing. (Zhang and Martonosi [64] have recently begun extending this
work to pointer data structures.) They introduce additional con-
straints to make the problem tractable. We avoid these constraints.

Work by Ahmed et al. on tiling imperfect loop nests [2, 3] em-
beds the iteration space of each statement of a loop into a product
space. We use this transformation in Section 3.4.

Caşcaval [12] estimates the number of cache misses using stack
distances. His prediction is valid for a fully-associative cache with
LRU replacement, and requires a probabilistic argument to transfer
to a cache with smaller associativity. He assumes that each loop
nest starts with a cold cache, sacrificing the accuracy gained from
knowing the actual cache state at the start of the loop nest.

Our simplified formulas resemble LMADs [47] in several re-
spects. Establishing a connection between them remains the subject
of future work.

Language-centric.Alt et al. [5] apply Abstract Interpretation to
predicting the behavior of instruction cache, for general programs.
Their notion of cache state is somewhat different from ours.

Prior empirical evidence [14, 15, 21] suggests that alternative
array layout functions provide better cache behavior than canoni-
cal layout functions for many dense linear algebra codes. Previous
work [27] has taken a combinatorial approach to modeling cache
misses in the presence of such non-linear data layouts.

Architecture-centric.Lam, Rothberg, and Wolf [38] discuss the
importance of cache optimizations for blocked algorithms, using
matrix multiplication as an example. Their simulation-based anal-
ysis is exact, but their performance models are approximate.

Fricker et al. [22] develop a model for approximating cache in-
terferences incurred while executing blocked matrix vector multi-
ply in a specific cache. Their analysis is inexact in considering only
cross-interferences and neglecting redundancies among array pairs.

McKinley and Temam [44] examine locality characteristics in
the SPEC’95 and Perfect Benchmarks. Their discovery most perti-

f[j1; 0; s; d] : 9(� : 1 6 j1 6 99 ^ 0 6 s 6 255 ^ � < d ^ 32s+ 8192d 6 �X ^ 800j1 + 8192d 6 792 + �X + 8192� ^

�X 6 31 + 32s+ 8192d ^ s+ 256� < 25j1)g

[f[j1; j2; s; d] : 9(� : 1 6 j1 6 99 ^ 0 6 s 6 255 ^ 1 6 j2 ^ 925 + 100j1 + j2 6 1024d + 4s ^ 8192d + 32s 6 �X + 8j2 ^

�X + 8j2 6 7 + 8192d + 32s ^ 100j1 + j2 6 99 + 4s+ 1024� ^ s+ 256� < 25j1)g

[f[j1; j2; s; d] : 9(� : 0 6 j1 6 99 ^ 0 6 s 6 255 ^ j2 6 99 ^ 25j1 6 s+ 256� ^ 8192d + 32s 6 �X + 8j2 ^

�X + 8j2 6 7 + 8192d+ 32s ^ 4s+ 1024� < 100j1 + j2 ^ 256 + 25j1 6 256d+ s)g

[f[j1; j2; s; d] : 9(� : 0 6 j1 6 99 ^ 0 6 j2 6 99 ^ 0 6 s 6 255 ^ 8192d + 32s 6 �X + 8j2 ^ �X + 8j2 6 31 + 8192d+ 32s ^

1021 + 100j1 + j2 6 1024d+ 4s ^ 100j1 + j2 6 3 + 4s+ 1024� ^ 4s+ 1024� 6 100j1 + j2)g

[f[j1; 0; s; d] : 9(� : 1 6 j1 6 99 ^ 0 6 s 6 255 ^ 257 + s+ 256d 6 25j1 ^ 32s+ 8192d 6 �X ^

800j1 + 8192d 6 792 + �X + 8192� ^ �X 6 31 + 32s+ 8192d ^ s+ 256� < 25j1)g

[f[j1; j2; s; d] : 9(� : 1 6 j1 6 99 ^ 0 6 s 6 255 ^ 1 6 j2 ^ 257 + 256d+ s 6 25j1 ^ 8192d + 32s 6 �X + 8j2 ^

�X + 8j2 6 7 + 8192d + 32s ^ 100j1 + j2 6 99 + 4s+ 1024� ^ s+ 256� < 25j1)g

[f[j1; j2; s; d] : 9(� : 0 6 j1 6 99 ^ 0 6 s 6 255 ^ j2 6 99 ^ 25j1 6 s+ 256� ^ 8192d + 32s 6 �X + 8j2 ^

�X + 8j2 6 7 + 8192d+ 32s ^ 4s+ 1024� < 100j1 + j2 ^ 1025 + 1024d+ 4s 6 100j1 + j2)g

[f[j1; j2; s; d] : 9(� : 0 6 j1 6 99 ^ 0 6 j2 6 99 ^ 0 6 s 6 255 ^ 8192d + 32s 6 �X + 8j2 ^ �X + 8j2 6 31 + 8192d+ 32s ^

1024 + 1024d + 4s 6 100j1 + j2 ^ 100j1 + j2 6 3 + 4s+ 1024� ^ 4s+ 1024� 6 100j1 + j2)g

Figure 4: A formula describing interior misses on X due to interference from A in Problem 5. Each 4-tuple is of the form [j1; j2; s; d],
where (j1; j2) identifies the iteration at which the miss occurs, and (s; d) identifies the set and the cache wraparound of the reference.

nent to our work is that most misses are internest capacity misses.
Harper et al. [28] present an analytical model that focuses on

set-associative caches. Their model approximates the cache miss-
ratio of a looping construct and allows imperfect loop nests to be
considered. They do not attempt to analyze multiple loop nests.

Trace-centric. Prior research [1, 57] has investigated various
analytic cache models by extracting parameters from the reference
trace. Simulation techniques, such as cache profiling [43, 39], can
provide insight on potential program transformations by classifying
misses according the cause of the cache miss. All trace-centric
approaches usually require full execution of the program.

Weikle et al. [58, 59] introduce the novel idea of viewing caches
as filters. This framework is not limited to analyzing loop nests or
other particular program constructs, but can handle any pattern of
memory references. Brehob and Enbody [11] model locality using
distances between memory references in a trace.

Wood et al. [63] explore the problem of resolving unknown ref-
erences in simulation—first-time references to memory blocks that
may miss or hit depending on the cache state at the beginning of
the trace sample—and show that accurate estimation of their miss
rate is necessary. We use cache state to resolve such unknown ref-
erences, and then categorize them as boundary misses or hits.

6. CONCLUSIONS AND FUTURE WORK
This work initially began from the intuition that the CME formu-

lation of Ghosh et al. was not fully exploiting all of the regularity
inherent in the problem. The output of the Presburger formulas
vividly illustrates this regularity, allowing us to employ general-
purpose tools for counting misses.

While powerful mathematical results (such as the existence of
the Ehrhart polynomial) are known for polytopes, the correspond-
ing algorithms are complex and subject to geometric degeneracies.
As a result, the software libraries are not very robust. Such de-
generacies have prevented us, for example, from calculating the
Ehrhart polynomial for the formula in Figure 4. Similar comments
apply, with less severity, to the Presburger decision procedures. The
robustness of both libraries needs to be improved substantially to
realize the full potential of our approach.

While we have made some progress in handling associativity,
symbolic constants, and non-linear array layouts, much remains to
be done on all three fronts. Our current handling of associativity is
incomplete and unscalable; in particular, it is not powerful enough
to model TLB behavior. Our ability to handle symbolic constants
derives from, and is therefore limited by, the corresponding capa-
bility in Omega. The constraints introduced in Section 3.6 to han-
dle non-linear data layouts are essentially 0–1 integer programming
constraints, which are likely to cause bad behavior in the Presbur-
ger decision procedures.

We have recently become aware of an alternative tool [10] that
claims to be more aggressive at formula simplification than Omega,
and also of an alternative approach to representing Presburger for-
mulas using finite automata [8, 9]. We intend to explore both these
options to try to improve the efficiency of our system. However,
the general problem of simplifying arbitrary Presburger formulas
is intrinsically difficult, no matter whether one views it from the
perspective of logic, number theory, computational geometry [53],
automata theory, or something else. In the end, the only practical
path to efficiency may involve developing specialized algorithms
that exploit some structural constraints of the kinds of formulas
that arise in our application.

In addition to compiler-related uses, our approach may also sig-
nificantly speed up cache simulators by enabling them to rapidly
leap-frog the computation over polyhedral loop nests that consume
most of the running time. The development of such a mixed-mode
cache simulator remains the subject of future work.

7. REFERENCES
[1] A. Agarwal, M. Horowitz, and J. Hennessy. An analytical cache model. ACM Trans. Comput. Syst.,

7(2):184–215, May 1989.

[2] N. Ahmed. Locality Enhancement of Imperfectly-nested Loop Nests. PhD thesis, Department of Computer
Science, Cornell University, Aug. 2000.

[3] N. Ahmed, N. Mateev, and K. Pingali. Tiling imperfectly-nested loop nests. Technical Report TR2000-1782,
Cornell University, 2000.

[4] N. Ahmed and K. Pingali. Automatic generation of block-recursive codes. In Proceedings of Europar 2000, pages
125–134, 2000.

[5] M. Alt, C. Ferdinand, F. Martin, and R. Wilhelm. Cache behavior prediction by abstract interpretation. In
R. Cousot and D. A. Schmidt, editors, SAS’96, Static Analysis Symposium, volume 1145 of Lecture Notes in
Computer Science, pages 51–66. Springer, September 1996.

[6] T. Amon, G. Borriello, T. Hu, and J. Liu. Symbolic timing verification of timing diagrams using Presburger
formulas. In Proceedings of DAC 97, pages 226–231, Anaheim, CA, June 1997.

[7] T. Amon, G. Borriello, and J. Liu. Making complex timing relationships readable: Presburger formula
simplification using don’t cares. In Proceedings of DAC 98, pages 586–590, San Francisco, CA, June 1998.

[8] B. Boigelot and P. Wolper. An automata-theoretic approach to Presburger arithmetic. In A. Mycroft, editor,
Proceedings of the Second International Symposium on Static Analysis (SAS ’95), volume 983 of Lecture Notes in
Computer Science, pages 1–18. Springer Verlag, Sept. 1995.

[9] A. Boudet and H. Comon. Diophantine equations, Presburger arithmetic and finite automata. In H. Kirchner,
editor, Proc. Coll. on Trees in Algebra and Programming (CAAP’96), volume 1059 of Lecture Notes in Computer
Science, pages 30–43. Springer Verlag, 1996.

[10] P. Boulet and X. Redon. SPPoC: fonctionnemen et applications. Research Report 00-04, LIFL (Laboratoire de
Recherche en Informatique de l’Université des Sciences et Technologies de Lille), 2000. In French. Also see
http://www.lifl.fr/west/sppoc/.

[11] M. Brehob and R. Enbody. A mathematical model of locality and caching. Technical Report
TR-MSU-CPS-96-TBD, Michigan State University, Nov. 1996.

[12] G. C. Caşcaval. Compile-Time Performance Prediction of Scientific Programs. PhD thesis, Department of
Computer Science, University of Illinois at Urbana-Champaign, 2000.

[13] S. Carr, K. S. McKinley, and C.-W. Tseng. Compiler optimizations for improving data locality. In Proceedings of
the Sixth International Conference on Architectural Support for Programming Languages and Operating
Systems, pages 252–262, San Jose, CA, Oct. 1994.

[14] S. Chatterjee, V. V. Jain, A. R. Lebeck, S. Mundhra, and M. Thottethodi. Nonlinear array layouts for hierarchical
memory systems. In Proceedings of the 1999 ACM International Conference on Supercomputing, pages 444–453,
Rhodes, Greece, June 1999.

[15] S. Chatterjee, A. R. Lebeck, P. K. Patnala, and M. Thottethodi. Recursive array layouts and fast parallel matrix
multiplication. In Proceedings of Eleventh Annual ACM Symposium on Parallel Algorithms and Architectures,
pages 222–231, Saint-Malo, France, June 1999.

[16] S. Chatterjee and S. Sen. Cache-efficient matrix transposition. In Proceedings of HPCA-6, pages 195–205,
Toulouse, France, Jan. 2000.

[17] M. Cierniak and W. Li. Unifying data and control transformations for distributed shared-memory machines. In
Proceedings of the ACM SIGPLAN’95 Conference on Programming Language Design and Implementation,
pages 205–217, La Jolla, CA, June 1995.

[18] P. Clauss. Counting solutions to linear and nonlinear constraints through Ehrhart polynomials: Applications to
analyze and transform scientific programs. In Proceedings of International Conference on Supercomputing, pages
278–285, May 1996.

[19] S. Coleman and K. S. McKinley. Tile size selection using cache organization and data layout. In Proceedings of
the ACM SIGPLAN’95 Conference on Programming Language Design and Implementation, pages 279–290, La
Jolla, CA, June 1995.

[20] P. Feautrier. Dataflow analysis of array and scalar references. International Journal of Parallel Programming,
20(1):23–54, 1991.

[21] J. D. Frens and D. S. Wise. Auto-blocking matrix-multiplication or tracking BLAS3 performance with source
code. In Proceedings of the Sixth ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, pages 206–216, Las Vegas, NV, June 1997.

[22] C. Fricker, O. Temam, and W. Jalby. Influence of cross-interference on blocked loops: A case study with
matrix-vector multiply. ACM Trans. Prog. Lang. Syst., 17(4):561–575, July 1995.

[23] S. Ghosh. Cache Miss Equations: Compiler analysis framework for tuning memory behavior. PhD thesis,
Department of Electrical Engineering, Princeton University, Nov. 1999.

[24] S. Ghosh, M. Martonosi, and S. Malik. Cache miss equations: An analytical representation of cache misses. In
Proceedings of the 1997 International Conference on Supercomputing, pages 317–324, Vienna, Austria, July
1997.

[25] S. Ghosh, M. Martonosi, and S. Malik. Precise miss analysis for program transformations with caches of arbitrary
associativity. In Proceedings of the Eighth International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 228–239, San Jose, CA, Oct. 1998.

[26] S. Ghosh, M. Martonosi, and S. Malik. Cache miss equations: A compiler framework for analyzing and tuning
memory behavior. ACM Trans. Prog. Lang. Syst., 21(4):703–746, July 1999.

[27] P. J. Hanlon, D. Chung, S. Chatterjee, D. Genius, A. R. Lebeck, and E. Parker. The combinatorics of cache misses
during matrix multiplication. J. Comput. Syst. Sci., 2000. To appear.

[28] J. S. Harper, D. J. Kerbyson, and G. R. Nudd. Analytical modeling of set-associative cache behavior. IEEE Trans.
Comput., 48(10):1009–1024, Oct. 1999.

[29] M. D. Hill, J. R. Larus, A. R. Lebeck, M. Talluri, and D. A. Wood. Wisconsin architectural research tool set.
Computer Architecture News, 21(4):8–10, August 1993.

[30] M. D. Hill and A. J. Smith. Evaluating associativity in CPU caches. IEEE Trans. Comput., C-38(12):1612–1630,
Dec. 1989.

[31] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages, and Computation.
Addison-Wesley Publishing Company, 1979.

[32] M. T. Kandemir, A. N. Choudhary, N. Shenoy, P. Banerjee, and J. Ramanujam. A linear algebra framework for
automatic determination of optimal data layouts. IEEE Transactions on Parallel and Distributed Systems,
10(2):115–135, Feb. 1999.

[33] W. Kelly, V. Maslov, W. Pugh, E. Rosser, T. Shpeisman, and D. Wonnacott. The Omega Calculator and Library,
version 1.1.0, Nov. 1996.

[34] W. Kelly, V. Maslov, W. Pugh, E. Rosser, T. Shpeisman, and D. Wonnacott. The Omega Library Version 1.1.0
Interface Guide, Nov. 1996.

[35] W. Kelly and W. Pugh. A framework for unifying reordering transformations. Technical Report CS-TR-3193,
Department of Compute Science, University of Maryland, College Park, MD, Apr. 1993.

[36] W. Kelly and W. Pugh. Finding legal reordering transformations using mappings. Technical Report CS-TR-3297,
Department of Compute Science, University of Maryland, College Park, MD, June 1994.

[37] R. E. Kessler and M. D. Hill. Page placement algorithms for large real-index caches. ACM Trans. Comput. Syst.,
10(4):338–359, 1992.

[38] M. S. Lam, E. E. Rothberg, and M. E. Wolf. The cache performance and optimizations of blocked algorithms. In
Proceedings of the Fourth International Conference on Architectural Support for Programming Languages and
Operating Systems, pages 63–74, Apr. 1991.

[39] A. R. Lebeck and D. A. Wood. Cache profiling and the SPEC benchmarks: A case study. IEEE Computer,
27(10):15–26, Oct. 1994.

[40] A. R. Lebeck and D. A. Wood. Active memory: A new abstraction for memory system simulation. ACM
Transactions on Modeling and Computer Simulation, 7(1):42–77, Jan. 1997.

[41] A. W. Lim and M. S. Lam. Maximizing parallelism and minimizing synchronization with affine transforms. In
Proceedings of the 24th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languagess, pages
201–214, Paris, France, Jan. 1997.

[42] V. Loechner. PolyLib: A Library for Manipulating Parameterized Polyhedra, Mar. 1999.

[43] M. Martonosi, A. Gupta, and T. Anderson. Memspy: Analyzing memory system bottlenecks in programs. In
SIGMETRICS92, pages 1–12, June 1992.

[44] K. S. McKinley and O. Temam. Quantifying loop nest locality using SPEC’95 and the Perfect benchmarks. ACM
Trans. Comput. Syst., 17(4):288–336, Nov. 1999.

[45] N. Mitchell, L. Carter, J. Ferrante, and K. Högstedt. Quantifying the multi-level nature of tiling interactions. In
Languages and Compilers for Parallel Computing: 10th Annual Workshop, LCPC’97, number 1366 in Lecture
Notes in Computer Science, pages 1–15. Springer, 1998.

[46] D. C. Oppen. A 2
2
2
pn

upper bound on the complexity of Presburger arithmetic. J. Comput. Syst. Sci.,
16(3):323–332, July 1978.

[47] Y. Paek, J. Hoeflinger, and D. Padua. Simplification of array access patterns for compiler optimizations. In
Proceedings of ACM PLDI, volume 33, pages 60–71, May 1998.

[48] A. K. Porterfield. Software Methods for Improvement of Cache Performance on Supercomputer Applications.
PhD thesis, Rice University, Houston, TX, May 1989. Available as technical report CRPC-TR89009.

[49] W. Pugh. Counting solutions to Presburger formulas: How and why. In Proceedings of the ACM SIGPLAN’94
Conference on Programming Language Design and Implementation, pages 121–134, Orlando, FL, June 1994.

[50] G. Rivera and C.-W. Tseng. Data transformations for eliminating conflict misses. In Proceedings of the ACM
SIGPLAN’98 Conference on Programming Language Design and Implementation, pages 38–49, Montreal,
Canada, June 1998.

[51] G. Rivera and C.-W. Tseng. Eliminating conflict misses for high performance architectures. In Proceedings of the
1998 International Conference on Supercomputing, pages 353–360, Melbourne, Australia, July 1998.

[52] U. Schöning. Complexity of Presburger arithmetic with fixed quantifier dimension. Theory of Computing
Systems, 30:423–428, 1997.

[53] N. Shibata, K. Okana, T. Higashino, and K. Taniguchi. A decision algorithm dor prenex form rational Presburger
sentences based on combinatorial geometry. In Proceedings of the 2nd International Conference on Discrete
Mathematics and Theoretical Computer Science and the 5th Australasian Theory Symposium
(DMTCS’99+CATS’99), pages 344–359, Jan. 1999.

[54] A. Srivastava and A. Eustace. ATOM: A system for building customized program analysis tools. In Proceedings
of the ACM SIGPLAN’94 Conference on Programming Language Design and Implementation, pages 196–205,
June 1994.

[55] The Stanford Compiler Group. SUIF: An Infrastructure for Research on Parallelizing and Optimizing Compilers.
http://suif.stanford.edu.

[56] R. A. Sugumar and S. G. Abraham. Efficient simulation of multiple cache configurations using binomial trees.
Technical Report CSE-TR-111-91, 1991.

[57] D. Thiebaut and H. Stone. Footprints in the cache. ACM Trans. Comput. Syst., 5(4):305–329, Nov. 1987.

[58] D. A. B. Weikle, S. A. McKee, and W. A. Wulf. Caches as filters: A new approach to cache analysis. In
MASCOTS’98, Modeling, Analysis, and Simulation of Computer and Telecommunication Systems, July 1998.

[59] D. A. B. Weikle, K. Skadron, S. A. McKee, and W. A. Wulf. Caches as filters: A unifying model for memory
hierarchy analysis. Technical Report CS-2000-16, University of Virginia, June 2000.

[60] V. Weispfenning. Complexity and uniformity of elimination in Presburger arithmetic. In Proceedings of the 1997
International Symposium on Symbolic and Algebraic Computation, pages 48–53, Kihei, Maui, HI, July 1997.

[61] M. E. Wolf and M. S. Lam. A data locality optimizing algorithm. In Proceedings of the ACM SIGPLAN’91
Conference on Programming Language Design and Implementation, pages 30–44, Toronto, Canada, June 1991.

[62] M. J. Wolfe. More iteration space tiling. In Proceedings of Supercomputing’89, pages 655–664, Reno, NV, Nov.
1989.

[63] D. A. Wood, M. D. Hill, and R. E. Kessler. A model for estimating trace-sample miss ratios. In Proceedings of
ACM SIGMETRICS, May 1991.

[64] H. Zhang and M. Martonosi. Mathematical cache miss analysis for pointer data structures. In Proceedings of the
SIAM Conference on Parallel Processing for Scientific Computing, Portsmouth, VA, Mar. 2001. CD-ROM.

